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Abstract The asymptotic form of the image interaction  is derived for a classical extemal 
point charge at a distance 71 outside a periodic meIaUic surface, generalizing to real metals the 
analytical result of h g  and Kohn for jellium. The cen- of gravity zC of the induced charge 
coincides with the position of the image plane zo in the limit of linear response. However, 
whereas 4 is shown to depend through non-lineas response on the magnitude of the extemal 
charge q, 70 is independent of q. We show that surface periodicity does not modulate 70, but 
adds to the image interaction a periodic component decaying exponentially with L. In addition, 
the long-ranged effect of non-linearity an the interaction energy is a term attractive to a positive 
extemal charge and proportional to q3/(71 - 70)~. We report first-principles pseudopotential 
calculations of the interaction energy with Wee aluminium surfaces: (1 1 I). (100) and (1 10). A 
supercell geometry is used. A discrete classical model without adjustable parameters reproduces 
the effect of the surface periodicity o" the image interaction at each of the three surhces.. 

1. Introduction 

The interaction of a point charge with a metal suiface has been studied theoretically for a 
variety of reasons. In many studies particular interest has centred on the classical image 
potential energy for a point charge q at a distance ZI from a metal surface 

The position of the image plane, 20, is the key parameter in simple models applied to 
real.metals, to explain for example the image induced surface states seen in inverse 
photoemission [l-31. The same form has been used in a quite different context to discuss 
the effects of image potentials on tunnelling rates in the field ion microscope 141. As OUI 

origin for z we follow the usual convention and take the geometric edge of the crystal, half 
an interplanar spacing outside the surface plane of atoms. 

Equation (1.1) is~believed to be the asymptotic form of the effective exchange and 
correlation potential energy, in the KohnSham sense, felt by an electron near a metal 
surface [5,6]. In this sense it is well known that one must go beyond the local density 
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approximation (LDA) for (1.1) to hold. However, even in the context of non-local density 
functional theory, such as the GW approximation [7], (1.1) has aroused some controversy 
between authors who regard it as arising from the Pauli exchange interaction [8] and those 
who derive it from the correlation energy [9]. The exact form of the interaction remains 
unknown. 

We shall not address directly in this paper the above problem of the interaction of 
an electron with a metal surface, interesting and important though it is. Our aim here is 
rather to study the interaction of a static, classical point charge with a real metal surface. 
We therefore do not address the complications of~dynamics or the exchange interaction 
between the charge and the sulface, although if these are not dominant in the physics of 
(1.1) our analysis may still be of some relevance to the asymptotic form of the electron- 
surface interaction. Furthermore, in the case we are studying, the form (1.1) certainly does 
not depend on whether the metal response is treated within the LDA or not-we believe 
that it is valid for any model in which variations in the Coulomb potential at a surface are 
essentially completely screened within a finite range below the surface. Our main motivation 
in carrying out the present work was that, although we believe that the situation within the 
jellium model has been adequately treated, in the case of a real discrete lattice there were 
still some unsolved conceptual and numerical problems even in the simplest static case. 
Besides, the image interaction is not only of interest in the context of the electron-surface 
interaction, but also for the interaction of positrons or ions with a metal surface. 

It is part of the folklore of the subject that the image plane position zo is identical to the 
centre of gravity of the induced charge zc. This was proved in the classic paper of Lang and 
Kahn [IO], hereafter referred to as LK, for the case of ajellium surface in the approximation 
of linear response. It is also true for a real metal surface, as stated by LK and proved here 
explicitly. However, the identity of zo and zc no longer holds when non-linear response 
is considered, as we shall see. Two questions arise when we think of going beyond the 
jellium model and linear response theory while trying to retain the expression (1.1) for the 
interaction energy. 

(i) Does the image plane position vary with position parallel to the surface, reflecting 
the corrugations in charge density and potential? 

(ii) Is the image plane position for an external charge affected by non-linear response? 
An image plane position which varies periodically, following the surface corrugations, is 
rather a natural way to generalize (1.1) and it has indeed been used to interpolate between 
the near-surface corrugated potential and the asymptotic jellium form [ I  I], so a positive 
answer to (i) is at least plausible. As for (ii) several authors have shown that the centre of 
gravity of the charge zc induced by a uniform perpendicular field varies linearly with the 
stren-gh of the field, both for jellium and for a real metal [12-16]. It is therefore reasonable 
to suppose that zo could be expanded in powers of q ,  with a linear term in q that would 
represent the lowest-order non-linear response. The answer to (ii) would then also be in the 
affirmative. By analysing the linear response and the lowest order of non-linear response 
to a point charge we show that although they were plausible hypotheses, in fact the answer 
to both (i) and (ii) is no! 

It is known already that the image plane position, at least in the sense of zc, is affected 
by the discrete lattice structure, and is not the same for real metals as for jellium [IS, 171. 
Nevertheless, it turns out that the concept of an image plane is still valid at distances such 
that the periodicity is no longer significant. How far away is that? We show here how the 
discreteness of the lattice causes variations in the image potential parallel to the surface, 
which are an additional term to (1.1). decaying exponentially with distance. The decay 
length is the inverse of the shortest surface reciprocal lattice vector. 

M W Finnis et a1 
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Regarding (ii), the role of non-linear response, the question is resolved by a careful 
distinction between the response to a point charge and to a uniform external field. Our 
finding is that because of non-linearity the image plane position and the centre of gravity of 
the induced charge are not identical. We derive a formula for the lowest-order non-linear 
interaction. Of course, in a sense we can always generalize (1.1) by allowing zo to be 
a function of the position and strength of the external charge, so forcing it to be true by 
definition. That would be an empty result. Rather the physics of the situation'specifically 
gives us (1.1) with a constanf zo equal to the zc associated with the linear response to 
a perpendicular field. The corrections to ( I .  1) are exponentially decaying corrugations 
together with a lowest-order non-linear term proportional to q3.  which we find decays as 

The importance of the corrugations in the image potential is investigated numerically 
by performing first-principles density functional calculations for an external charge above 
the (1 1 I), (100) and (1 10) surfaces  of AI, using a supercell technique. We show that as 
expected on the basis of the preceding analysis, the corrugations are strongest above the 
(110) surface. Finally we show how the corrugations are qualitatively reproduced for all 
three surfaces by the discrete classical model (DCM) introduced in a previous paper [18] and 
tested there for the (1 11) snrface. This is a precondition for the DCM to be used as part of a 
semiempirical model of the interface between an ionic crystal and a metal, and it represents 
an important numerical result of this paper. 

(zl - z ~ ) - ~ .  

2. The linear response of a real metal surface 

In this section we present a generalization of LK'S treatment of the jellium problem to a 
r&l metal surface, which gives us the asymptotic behaviour of the interaction including the 
effect of the periodic lattice structure. As appropriate for problems of linear response at a 
surface, we work in k space parallel to the surface ( x ,  y) and in real space in the z direction 
normal to the surface. 

2.1. The induced charge distribution 

We write the induced charge density n(x ,  y ,  z )  as n(r, .I) and its Fourier transform as 

n(k ,  z )  = // drn( r .  z)eik". 

n(R, z )  = / K ( I C ,  IC - g ,  z ,  ~ ' ) v ( Ic  - g. 2'). (2.2) 

(2.1) 

It is convenient to consider the response to the total electrostatic or Hartree potential V 
rather than to the external potential Vex,. This is because the variation of V decays rapidly 
inside the metal by virtue of the metallic screening, whereas the external potential is long 
ranged. The linear response function K is defined by 

fi 

Because of the periodicity, K is only non-zero if it connects pairs of k vectors that differ 
by a two-dimensional reciprocal lattice vector g .  

It is seaightfonvard to show that the potential of an external charge q situated at (71, ZI) 
is given by 

(2.3) k l z l - i l  i k q  V,,,(k, z )  = (2nfk)qe- e . 
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The induced charge n creates a potential 

M W Finnis et a1 

2n !&(IC, z) = 1 dz'Te-XIz''-zl n(k, z'). (2.4) 

Inserting (2.3) and (2.4) into (2.2) gives an integral equation for n: 

We now assume that, by virtue of the metallic screening, the response function can be 
assumed to vanish if its z arguments differ by more than a certain value d. Thus wherever 
K is not vanishing we have 

Iz' - zI < d. (2.6) 

We further assume that the external charge is located at least this far from the region of 
interest at z, at which the induced charge is evaluated; that is, it lies outside the metal charge 
distribution: 

z l - z > d .  (2.7) 

Combining (2.6) and (2.7) gives 

z, - 2' t 0. (2.8) 

Thus we can replace I Z I  - z'l in (2.5) by ZI - z'. It will also be useful to work with a 
renormalized charge distribution, following LK: 

ii(k, z) = e"ln(k, z), (2.9) 

Making these substitutions in (2.5) we obtain 
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This part of the normalized density is independent of Z I ,  just like the total ii in the jellium 
case treated by LK. The remainder A i  is defined by 

(2.12) 
~. . A i  = ii -60 

or in terms of the'uruenomalized densities 

An = n - no = e-kz1 A i  (2.13) 

and from (2.10) and (2.11) it satisfies 

2.2. The large-z, limit 

We can write equation (2.14) in the shorthand form 

An(,k) + I(k, IC - g) * An(k - g)  = 
6 g#o 

C ( k ,  IC - g)qe-ik-girlei(k-rr)'rl (2.15) 

where the I(k, k'- g)  are linear integral operators acting on the z ,  the C ( k ,  k - g)  are 
real numbers (functions of z )  and all the T I  and z1 dependence is contained in the explicit 
exponential factors. As we let z1 become larger, the only term surviving on the right-hand 
side is the one with non-zero g closest to k; let us label this reciprocal lattice vector g k .  We 
are not going to solve this infinite set of equations, because we do not know the response 
function that .defines its coefficients, but we can see how the solution might be obtained in 
principle and hence obtain its asymptotic behaviour as z ,  becomes larger. As a first step the 
z variables would be discretized, so that the integral operators become matrix operators, and 
we obtain as many equations as we have discrete z values. This is the well known Fredholm 
method of solving integral equations [19]. As a second step we could reasonably assume 
that only a finite number of g are significant, and we can add equations for k ~= k + G, 
where G runs over all these significant vectors, say within some cut-off radius of the origin; 
by this means we can generate as many equations as there are unknowns. Notice that the 
right-hand sides all have the same ZI dependence. Now if the resulting system of linear 
equations is solved, the solution must be of the form 

~ ~ ( k ,  z )  = f(k, z)qe-lk-g*lz,e'(k-g~).r', (2.16) 

We will use this later to obtain the interaction energy. 
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2.3. Sum rules in the small-k limit 

Certain sum rules apply in the limit k = 0, independent of the in-plane position q of 
the external charge, which for the present purpose we can regard as the origin of ( x ,  y), 
Referring to (2.14). we make the physical assumptions that Aii(k, z) is finite in the limit 
k = 0, and that the summation over g is bounded. The factor 2 a l k  diverges, and therefore 
the factor by which it is multiplied has to vanish in the limit of small k.  This implies that 

M W Finnis et a1 

1 dz An(0, z) = 0 (2.17) 

which simply says that the net total charge density induced by the off-diagonal response is 
zero. Applying the same arguments to (2.10) we have 

(2.18) 

and since from the asymptotic behaviour of An we have 

lim ii(k, z) = ii&, z) (2.19) 
21-CU 

we also obtain 

4 + dz iio(0, Z) = 0. (2.20) J 
Another important sum rule for GO can be obtained, which is equivalent to a jellium 

result derived by LK and which is essential for deriving the asymptotic image potential. 
Consider equation (2.10) for z so deep in the metal that n(k,  z) vanishes. Without loss 

of generality lie must also vanish, for the following reason. Because i i o  is independent of 
ZI ,  we can assume the case of arbitrarily large z1 for which the limit (2.19) is reached. 
Hence where n vanishes so does Eo. 

We now expand the right-hand side of (2.11) in powers of k .  As the left-hand side 
vanishes not only the constant term but also the term linear in k must vanish in order to 
cancel the 271 f k divergence. This term is 

qkz' + / dz"ii(0, z")kz' - dz"ii(0, z")kz" + dz"iil(0, z")k = 0. J s 

/ dz"ii(0, z")z" = dz"iil(0, z"). s 

(2.21) 

Following LK, we have introduced the expansion coefficient El, which must incidentally be 
isotropic in k space for (2.21) to hold. The terms in z' cancel by virtue of the last sum rule 
(2.20), so we are left with 

(2.22) 
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3. The interaction energy 

The total interaction energy of the external charge with the metal is obtained in the usual 
way by doing an adiabatic integration from zero to unity over the coupling constant A, 
which switches on the external potential: 

where nIOf is the total charge density of the metal, including all electrons and ions. The 
electron density induced in linear response n, and the second-order response nz. appear as 
the coefficients in the Taylor expansion of ntOt with respect to A: 

U,, = / / I  dx dy dz 1 dh [nu&. Y. z, 0) +An@, Y. z) +hzn2(x, y .  z) + ..lV,dx, y, z) 

(3.2) 

I 

= U, + U2 + U3 + " '  
- <  

where the first-order term in the interaction energy is the electrostatic interaction of the 
external charge with the unperturbed metal: . 

(3.3) 
I 

The first non-linear response term 

will be discussed further below. 
The image interaction is Uz, which contains the induced charge in linear response. We 

now analyse the long-range behaviour of this term, and to simplify the notation we drop the 
suffix 2, which indicated the order of perturbation theory, as we have implicitly also done 
for n. The image interaction is therefore 

U =  dxdydzn(x,y,z)Vert(x,y,z) =f(2n)- '  /// dzdkn(k. z)V,,,(-k, z). 

(3.5) 

This can be split into two parts 

U = U0 + AU (3.6) 

where 

U0 = ;(2ir)-2 / j /  dzdkno(kz)Vd-k ,  z) (3.7) 

and 

AU = ' ( 2 n ) - 2 / j /  2 dzdk An(k, z)V,,,(-k, z). (3.8) 
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The part AU varies periodically with the displacement of the external charge parallel to the 
surface T ~ .  This is intuitively obvious, but if desired the periodicity can be seen explicitly 
as follows. Because An contains the factors ei(k-g)'ri and V,, contains the factor e-ik'rl, 
the k dependence in these factors cancels to leave the factor e-'prl. There are such factors 
in (3.8) for all non-zero g. and these factors represent the surface periodicity. On the 
other hand the part U0 is translationally invariant parallel to the surface, since the only 
dependence was in the cancelling factors eik.pI and 

charge we have 

M W Finnis et a1 

Consider next the z1 dependence of AU. Inserting (2.3) for the potential of the external 

dz dk An@, z)e-k~rl-z~qe-'k''l/k. (3.9) sss AU = 4(2~)- '  

If Z I  is large compared to the interatomic spacing we can insert the asymptotic 
equation (2.16) for An, and note that where the induced charge is non-vanishing ZI > z, 
which allows us to write the asymptotic form of AU as 

A u  = 3(&)-1 2 /"I/" ~ d ] c e - S L Z ~ e ( S * - k - I ~ : - S r l ) L I e k L  f (IC, z)q2e-'gk''l,/k. (3.10) 

We have grouped the exponents in this way to enable us to extract the leading terms at large 
zI. The integral over k can be written as a sum of contributions from each g. in which 
each contributing k integral only extends over the Brillouin zone centred on that g: - 

(3.11) 

Now we exploit the inequality 

- gmi, 4 g - k - Ik - 91 4 0 (3.12) 

where g ~ "  is the length of the shortest reciprocal lattice vector, which tells us that the 
integrand is bounded for large ZI.  Hence the leading terms at large ZI will be those 
containing the exponential factor with shortest g, describing the longest periodicity in the 
surface. The shortest g belong to the set {gmin). Our final result of this analysis is that AU 
falls off asymptotically with el at least as fast as e--S"LI. It i s  well known that the potential 
at a distance z from a planar array of compensating positive and negative charges with the 
periodicity described by gfio falls of f  as e--SmlaL, so our result is not surprising. 

Having dealt with the periodic part of the interaction, the asymptotic behaviour of U, 
follows as in the jellium case. We expand no to linear order in k: 

no(k,z) =e-kzl{iio(O,z) + i~ (O,z )k+ . . . )  (3.13) 

where the exponential factor ensures convergence at large distance. Inserting (3.13) and 
(2.3) for the potential into (3.7), expanding the potential in powers of k to linear order 
(except for the factor e-kzL, which ensures convergence) and exploiting the radial symmetry 
to integrate out the orientation dependence of k we obtain 

UO= 4 ~ ~ d z d k e ~ 2 * i ~ ~ i i o ~ 0 , z ) + ~ ~ ~ ~ ~ 0 , z ) + i i ~ ( 0 , z ) l k +  2 O(k2)). (3.14) 
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Applying the sum rules (2.20) and (2.22) to (3.14) we obtain 

(3.15) 

where we have introduced the centre of gravity zo of the induced charge, which is defined 
by 

4Zo = - s dz ziio(0, z). (3.16) 

It is easily~shown that zo is also the centre of gravity of the charge induced by a weak 
uniform perpendicular applied field. One simply has to imagine the applied~ field to  be 
generated by a uniform sheet of charge parallel to the surface, and then to integrate the 
result for a point charge over all elements of the sheet. The result (3.15) can be written in 
the familiar form 

U0 = -42/4(21 -zo) +420(l/z:). (3.17) 

If we add further terms k" to the expansion in (3.14) we generate corresponding terms of 
order z;'"'') in UO, and the general result (3.17) allows for this. 

The above derivation of (3.17) follows closely that of LK. We can however go further 
and explicitly evaluate the terms in the Laurent expansion (3.17) if we use instead pf (3.13) 
an exact representation of no(k, z) for small k, which we~derive in the next section, (4.4). 
This is straightforward, and we find that the coefficients in (3.17) are simply proportional 
to the moments of the induced charge density. The result can be written in the form 

(3.18) 

where the moments are defined by 

(3.19) 

and the first moment vanishes by the definition of to .  From (3.19) we see that the effect of 
the lowest-order correction to the image formula (1.1) is to multiply it by the factor 

I1 hi = 1 dz (z - zo)"no(O, z) dzno(0, z) 

(1 + z:/(z1 - Z0)Z) (3.20) 

in  which z2 = &/2 is a distance of atomic dimensions, which is a measure of the 
thickness of the induced charge distribution. 

4. Classical model$ 

We briefly describe in this, section the two classical models used to understand the image 
interaction, which will be compared later to the results of nb initio calculations. 
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4.1. The classical continuum model (CCM) 

The CCM refers to the elementary model of classical electrostatics, which deals with a point 
charge outside a conducting half space. It is a useful reference model for thinking about 
the real situation. The results are well known, and we recall only the essentials here. The 
charge induced on the surface, which we define to be at ZO, is 

nCCM(T) = -4(Zl - Z0)/2Jf[r2 + (ZI -ZO~z~3'z~ (4.1) 

In this case the transformed charge density introduced in section 2 is 

The true induced charge density must have a similar form in the small-k limit, that is, where 
the classical description is accurate, but it will be smeared out over z in the region of the 
surface. 

We have in previous work [18] described the situation for a point charge in the space 
between slabs of conductor periodically repeated, which is the geometry for which our 
numerical calculations have been made. The problem in classical electrostatics is identical 
to that of a point charge in the space between two semi-infinite conductors, as follows by 
the uniqueness theorem if all the slabs are earthed. The problem can~therefore be solved 
by summing the multiple images, as described previously. This was done for the geometry 
of the periodic cells in which the DCM and first-principles calculations were also made. 

Before leaving the CCM, we can use it to give a more heuristic derivation of the form 
of n found in the limit of large z1. This helps to visualize the behaviour of n. We expect 
the form of n ( T ,  z) to be like the purely periodic form induced by a uniform perpendicular 
field, modulated by the much more slowly varying envelope n c c ~ ( r ) :  

Hence making use of (4.2) we find 

n ( k ,  z) = q c c ( g ,  z)e-lle-gl(z~-zo), 
E 

(4.4) 

Notice the similar form to (2.16) for An,  but (4.4) includes of course the part no. The 
contributions from different parts of k space are localized*near the reciprocal lattice vectors. 
Figure I shows schematically the form of n in real and reciprocal space. (4.4) illustrates 
that at large ZI all the g # 0 terms decay exponentially as e-grl, so the leading terms come 
from k close to zero. 

Another application of the classical envelope nCCM(T) will be to estimate the effect of 
non-linear response in section 5. 

4.2. The discrete classical model (DCM) 

This is the model, introduced by one of us in previous work [18,20,21], that is a simple 
extension of the continuum model to take account of the discreteness of the lattice. A brief 
description of the DCM is as follows. 

On each atomic site i of the metal we assume a point charge q( i )  and a dipole moment 
p( i ) .  An external potential is assumed to be caused by one or more fixed classical point 
charges. The electric fields E(i) and the potentials V ( i ) ,  are next calculated by classical 
electrostatics. As further physical conditions we include the following. 
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Figum 1. A schematic picture of the c h q e  density at 
a real metal surface induced by an ext& point charge 
(a) in real space. indicating the similarity between the 
charge induced locally in two different places. which to 
a first approximation is simply scaled by’the classical .. .. 

k envelope function, and (b) in reciprocal space. 

(i) The total net charge must be zero (global charge neutrality). 
(ii) Each atomic site of the metal must be at the same electrostatic potential. 

These two conditions are sufficient to define a set of linear equations that uniquely determine 
the values~of q( i j  and p( i ) .  We need to define two input parameters: a ‘self-energy’ U, 
which defines the contribution of q ( i )  to the potential on its own site, and a polarizability CY 
of the metallic atoms. We have assumed a value of Cl = 10.9 eV, which describes the self- 
energy of a uniformly charged sphere of the Wigner-Seitz radius RWS. The polarizability 
we take to he that of a classical conducting sphere of radius Rws. namely (Rwsj3 (in atomic 
units). 

The resulting system of linear equations for the unknown q( i )  and p( i )  can be solved 
by standard procedures. Hence we obtain the energy as a function of the positions of the 
metal atoms and of the external charges. 

5. Non-linear response 

The result we now derive is at first sight paradoxical: non-linear response, while it shifts 
the cenke of gravity of the induced charge, does not in fact shift the image plane position. 
Consider the situation at large z1, where the variation of the induced charge density between 
neighbouring unit cells of the surface is very small. The response locally looks just like the 
response to a normal resultant electric field of magnitude 



2012 

where A denotes a unit cell at the position of interest. This was the basis of writing the 
induced charge in the form (43). 

The most significant effect of non-linear response is to shift the centre of gravity of 
the induced charge by an amount proportional to E [22]. Since E varies in proportion 
to the local mean value of n over a unit cell, the shift of the local centre of gravity of 
different regions of the induced charge varies from zero at infinity to a maximum value 
directly beneath the external charge. We are now looking at local regions large compared 
to a unit cell but small enough that the induced charge does not vary significantly between 
the unit cells. This shift in the local centre of gravity will be the leading-order effect of 
non-linear response. Shape changes in n will also be induced, but they contribute to the 
induced potential only as higher multipoles, which we shall ao t  consider. The potential 
induced by this shift is that of a dipole p proportional to E and n: 

M W Finnis et a1 

p(r) = -w(r)E(r)  (5.2) 

where from (4.1) 

(5.3) 

(5.4) 

and EO is the displacement of the centre of gravity of the induced charge per unit of normal 
field, a quantity available from calculations in the literature [12,13,15,16,22]. It is known 
that a0 is sensitive to the lattice structure, and not well reproduced by jellium. For example 
Aers and Inglesfield [15] found a value of 8.83 au for the Ag(001) surface, and Lam and 
Needs I161 found 5.7 au and 3.9 au for Al(111) and Al(I10) respectively. In using the 
classical solution for n here we are throwing away all but the leading-order contributions to 
the z.1 dependence of the result. We are not therefore able to predict anything about the short- 
range non-linearity, which in addition must reflect the periodicity. The sign convention is 
such that a positive electric field is directed outwards from the surface and is associated with 
a positive induced charge. The dipole is always negative, in keeping with the calculations 
referred to. 

From (3.4) the contribution of the second order induced charge density to the interaction 
energy is 

which, substituting for p(r), becomes 

This is the result that tells us that the non-linearity does not affect the image plane position. 
The latter is proportional to the coefficient of 2;’ in the interaction energy, whereas we 
have shown here that the non-linearity first enters to order 2T4. We also note that the non- 
linearity provides an additional interaction attractive to a positive charge and repulsive to a 
negative charge. Its magnitude is however negligible in comparison to the linear response 
term, as the following calculations show, except at such a close range that the asymptotic 
form is in any case no longer valid. 
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6. The first-principles method 

We use the standard density functional method (DFM) in the local density approximation 
(LDA), a non-local nom conserving pseudopotential for AI, and a basis of plane waves. 
A partial core correction for exchange and correlation is included routinely, although our 
experience for surface calculations in AI suggests that this is not an important effect. A 
plane wave cut-off of 8 eV was used. To minimize the energy with respect to the plane 
wave coefficients a modified Davidson method was applied. Further details are given in 
[23. 

7. Calculations and comparison with the classical models for three surfaces of AI 

7.1. Calculations 

The calculations have been made with supercells, each containing a slab of metal and a slab 
of vacuum. Three cases were considered, in which the slabs had (lll), (100) and (110) 
surfaces and contained three, four and six layers of atoms respectively. Each layer contained 
four atoms. A three-layer slab for the (1 11) surface, with the same amount of vacuum, was 
shown previously to be adequate for describing the surface energy [NI. More layers are 
needed for more loosely packed (100) and (110) surfaces in order to reduce adequately 
any effect of interactions between the surfaces of a slab. The width of the vacuum d,, 
between the geometric surfaces of the slabs was chosen to be the same for each orientation 
and equivalent to five (111) layers, for comparability with the CCM. The results are only 
equivalent to a single charge above a semi-infinite metal when the charge is very close. 
Otherwise, the effects of the overlapping response to the charges in the periohic array of 
external charges and their images in the next-repeated slab become apparent. These effects 
of a periodic system will be fully included in the subsequent comparison with classical 
models. 

We have calculated the change in total energy per supercell as a function of position of 
an external negative charge q = -/el .  The charge was moved in steps along a line in the 
vacuum between surfaces. For each position of q, total energies were obtained using all three 
approaches: the density functional pseudopotential method (PPM), the DCM and the CCM. 
The results are shown in figure 2. The absolute value of energy in supercell calculations is 
arbitrary and is not co~mparable between the different models. We have therefore set it in 
every case to zero at the central position of q. In the CCM, the crystallographic orientation 
is irrelevant and the calculations were made for classical conductors separated by a distance 
h approximately equal to dvx. The separation h was then adjusted iteratively in order to fit 
the results of the PPM calculations around the centre of the vacuum. In this way the fitted 
value of h provides an estimate of  the^ location of the image plane: 

ZOh = (dmc - h)/2.  (7.1) 

This CCM value of zo was obtained corresponding to each slab orientation. However, these 
values have to be treated with caution, for the following reasons. Because of the periodic 
boundary conditions parallel to the slabs, we are really solving the problem for a planar array 
of external charges rather than a single external charge. In the.linear response regime this 
does not affect the image plane position, and equation (7.1) is still applicable. One has to 
extend the Coulomb summation over multiple images to include the images of charges in the 
other supercells, and these terms rapidly 4ecome negligible as the distance from a surface 
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Figure 2. Total energy calcu~tions in supercell geometry as a function of position of the unit 
negative charge in the vacuum between opposite faces of Al. Results are shown for (a) ( I l l ) ,  
(b) (100) and (c) (110). 

becomes less than the repeat distance. This is how we performed the CCM calculations. 
However, if non-linear response is significant, the value of Z O ~  obtained from equation (7.1) 
is not the same as the hue value zo for a single external charge, which as we have shown is 
not affected by non-linear response. Why does non-linear response affect the Z O ~  calculated 
according to (7.1)? A simple way to think of it is that in the limit of Iarge z, far from 
the metal surface, the array of charges as seen from the metal surface looks like a planar 
sheet of charge. Its effect on the surface is then the same as that of a uniform perpendicular 
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applie :, at 
a distance xh from one surface and (1 - x)h from the other. By simple electrostatics, the 
surface charges induced on each slab are in the ratio (1 - x )  to x .  Hence the strength of 
the field at either surface is independent of h and depends only on the relative position of 
the sheet within the vacuum. The non-linear response to this field will shift the centre of 
gravity of the charges induced on either slab, as discussed previously. If the sheet is near 
the centre, x = $, the non-linear shifts of the induced charges on both sides are comparable, 
and they increase the value of h. We have monitored this effect in the case of the (100)~ 
slabs by performing the PPM calculations for q = -lei, q = -lel/Z and q = -le1/4. After 
refitting h we obtain the corresponding results for zm shown in table 1. 

Consider this sheet of charge situated somewhere between the metal I 

Table 1. Image plane positions obwined from pseudopotential calculations for the (100) slab. 

External charge LM (au) 

4 = -le1 1.15 
4 =-I412 1.7 
4 = -le114 2.06 

In a final series of c$culations we have performed a coarse scan of the energy as a 
function of position on planes parallel to the (100) and (110) surfaces, in order to obtain a 
three-dimensional picture of the variations. Both PPM and DCM calculations were performed. 
The results are illustrated in figure 3. 

7.2. Discussion of results 

For reasons of computation time it was not possible to scan the whole threedimensional 
space of positions of the charge. However, since the one-dimensional scan goes from top to 
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Figure 3. Total energy wlculations on planes parallel to the surfaces, showing the cormgations 
due to surface periodicity. The unit of length a is the lattice pmmeter of Al. The origin,is 
above an atomic site. (a) (100) with PPM; (b) (100) with DCM, (c) (110) with WM; (d) (110) wlth 
m. 

hollow sites, which lie on planes of mirror symneQ perpendicular to the surface, the scan 
includes the extrema of the interaction energy. Hence the curve of energy from the PPM and 
DCM versus distance across the vacuum in each geometry is not perfectly symmetric about 
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its maximum at the midpoint, and its asymmetry gives us the amplitude of the cormgations 
in the image interaction on a plane parallel to the surface. We see from figure 2 that 
the asymmetry increases in the order ( I l l ) ,  (IOO), (IlO), exactly as we would expect on 
the basis of the compactness of the surface planes, (111) being most like jellium. The 
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magnitudes of gmin decrease in the same sequence, which from the previous analysis is a 
measure of how fast the cormgations decay. As we had hoped, the DCM gives a reasonable 
representation of the ab initio PPM data at closer distances to the surfaces than the symmetric 
CCM (shown in figure 2(a) and (c)). However, even the CCM is adequate down to about 
5 au of the surface. 

Figure 3 shows in more detail a comparison of the DCM and PPM results for the corrugated 
image potential. We see that the DCM semiquantitatively reproduces the stronger attraction 
above atomic sites compared to hollow sites. The energy above the (1 10) surface illustrates 
much smaller variations as we'move along parallel to the (1 10) close-packed rows compared 
to the variations on a path perpendicular to the close-packed rows. 

As table 1 illustrates, non-linear response makes a significant difference to the image 
plane position as deduced from equation (7.1). although as we have shown it does not 
alter the 'true' image plane position. To deduce the true value of the image plane position 
we should extrapolate zoh(q)  to q = 0, as attempted for the (111) surface by Finnis [18]. 
However, the determination of Z O ~  is rather poorly conditioned, because rather large changes 
in zo make only small changes to the energy at distances near the middle of the vacuum in 
OUT model. Coupled with the numerical noise in the PPM calculations, this leads to an error 
of perhaps k0.2 A in the estimates of Z O ~  by this technique. We can assume that with exact 
data values, the extrapolation to q = 0 would be exactly linear. 

M W Finnis et nl 

8. Summary and conclusions 

The form of the image interaction for a classical point charge outside a real metal surface 
has been derived by exploiting the properly that external fields are screened out completely 
within a finite range of the surface. The surface is assumed to be periodic. Our principal 
analytic results are as follows. 

(i) The asymptotic image potential (3.17) is valid, in which the image plane is the centre 
of gravity of the charge induced in linear response by a perpendicular external field, just as 
in the jellium result of Lang and Kohn. 

(ii) Periodic effects due to the discrete atomic structure of the surface decay 
exponentially, with the characteristic length of the surface periodicity, in keeping with 
our experience of the potential from a static array of dipoles. 

(iii) We have derived a Laurent expansion of the interaction energy in inverse powers of 
z1 - zo (3.18). The first non-vanishing term after the image term is the inverse cubic term, 
the coefficient of which is a measure of the thickness of the induced charge distribution. 
The exact expression is given by (3.20). Higher-order terms depend on higher moments of 
the induced charge distribution. 

(iv) The effect of non-linearity in the interaction energy first enters the Laurent expansion 
as an inverse quartic term, which we have derived explicitly (5.6). Its coefficient is 
proportional to q3 and to the shift in the centre of gravity of the induced charge as a 
function of a perpendicular applied field. Its magnitude is negligible compared to the other 
corrections to the image form previously mentioned, which are due at close range to the 
surface corrugation and in the asymptotic region to the finite thickness of the induced charge. 

Numerical calculations have been made in a supercell geometry for the interaction in the 
neighbourhood of (1 1 l), (100) and (1 10) aluminium surfaces. The calculations were made 
with a self-consistent PPM, the DCM and the CCM (which does not distinguish crystal faces). 
Our numerical results are summarized in figures 2 and 3. They show the accuracy of 
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the CCM to within about 5 au of the surface layer, within which the DCM is a superior 
approximation, because it describes semiquantitatively the effect of surface corrugations. 
The corrugations are most significant for the most loosely packed (1 10) surface. 
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